Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization

نویسندگان

  • Immanuel M. Bomze
  • Werner Schachinger
  • Gabriele Uchida
چکیده

Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone C of all completely positive symmetric n×n matrices (which can be factorized into FF, where F is a rectangular matrix with no negative entry), and its dual cone C∗, which coincides with the cone of all copositive matrices (those which generate a quadratic form taking no negative value over the positive orthant). We provide structural algebraic properties of these cones, and numerous (counter-)examples which demonstrate that many relations familiar from semidefinite optimization may fail in the copositive context, illustrating the transition from polynomial-time to NP-hard worst-case behaviour. In course of this development we also present a systematic construction principle for non-attainability phenomena, which apparently has not been noted before in an explicit way. Last but not least, also seemingly for the first time, a somehow systematic clustering of the vast and scattered literature is attempted in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indefinite copositive matrices with exactly one positive eigenvalue or exactly one negative eigenvalue

Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out if a matrix with exactly one negative eigenvalue is strictly copositive or not can be formulated ...

متن کامل

Ela Indefinite Copositive Matrices with Exactly One Positive Eigenvalue or Exactly One Negative Eigenvalue

Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out if a matrix with exactly one negative eigenvalue is strictly copositive or not can be formulated ...

متن کامل

A fresh CP look at mixed-binary QPs: new formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of or...

متن کامل

Geometry of the Copositive and Completely Positive Cones

The copositive cone, and its dual the completely positive cone, have useful applications in optimisation, however telling if a general matrix is in the copositive cone is a co-NP-complete problem. In this paper we analyse some of the geometry of these cones. We discuss a way of representing all the maximal faces of the copositive cone along with a simple equation for the dimension of each one. ...

متن کامل

An LP-based Algorithm to Test Copositivity

A symmetric matrix is called copositive if it generates a quadratic form taking no negative values over the nonnegative orthant, and the linear optimization problem over the set of copositive matrices is called the copositive programming problem. Recently, many studies have been done on the copositive programming problem (see, for example, [14, 5]). Among others, several branch and bound type a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2012